Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Med Genet ; 61(3): 250-261, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38050128

RESUMEN

BACKGROUND: Classic aniridia is a highly penetrant autosomal dominant disorder characterised by congenital absence of the iris, foveal hypoplasia, optic disc anomalies and progressive opacification of the cornea. >90% of cases of classic aniridia are caused by heterozygous, loss-of-function variants affecting the PAX6 locus. METHODS: Short-read whole genome sequencing was performed on 51 (39 affected) individuals from 37 different families who had screened negative for mutations in the PAX6 coding region. RESULTS: Likely causative mutations were identified in 22 out of 37 (59%) families. In 19 out of 22 families, the causative genomic changes have an interpretable deleterious impact on the PAX6 locus. Of these 19 families, 1 has a novel heterozygous PAX6 frameshift variant missed on previous screens, 4 have single nucleotide variants (SNVs) (one novel) affecting essential splice sites of PAX6 5' non-coding exons and 2 have deep intronic SNV (one novel) resulting in gain of a donor splice site. In 12 out of 19, the causative variants are large-scale structural variants; 5 have partial or whole gene deletions of PAX6, 3 have deletions encompassing critical PAX6 cis-regulatory elements, 2 have balanced inversions with disruptive breakpoints within the PAX6 locus and 2 have complex rearrangements disrupting PAX6. The remaining 3 of 22 families have deletions encompassing FOXC1 (a known cause of atypical aniridia). Seven of the causative variants occurred de novo and one cosegregated with familial aniridia. We were unable to establish inheritance status in the remaining probands. No plausibly causative SNVs were identified in PAX6 cis-regulatory elements. CONCLUSION: Whole genome sequencing proves to be an effective diagnostic test in most individuals with previously unexplained aniridia.


Asunto(s)
Aniridia , Anomalías del Ojo , Humanos , Factor de Transcripción PAX6/genética , Aniridia/genética , Mutación/genética , Anomalías del Ojo/genética , Exones , Proteínas de Homeodominio/genética , Proteínas del Ojo/genética , Linaje
2.
Am J Med Genet C Semin Med Genet ; 193(3): e32058, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37534867

RESUMEN

This study focused on the development and initial psychometric evaluation of a set of online, webcam-collected, and artificial intelligence-derived patient performance measures for neurodevelopmental genetic syndromes (NDGS). Initial testing and qualitative input was used to develop four stimulus paradigms capturing social and cognitive processes, including social attention, receptive vocabulary, processing speed, and single-word reading. The paradigms were administered to a sample of 375 participants, including 163 with NDGS, 56 with idiopathic neurodevelopmental disability (NDD), and 156 neurotypical controls. Twelve measures were created from the four stimulus paradigms. Valid completion rates varied from 87 to 100% across measures, with lower but adequate completion rates in participants with intellectual disability. Adequate to excellent internal consistency reliability (α = 0.67 to 0.95) was observed across measures. Test-retest reproducibility at 1-month follow-up and stability at 4-month follow-up was fair to good (r = 0.40-0.73) for 8 of the 12 measures. All gaze-based measures showed evidence of convergent and discriminant validity with parent-report measures of other cognitive and behavioral constructs. Comparisons across NDGS groups revealed distinct patterns of social and cognitive functioning, including people with PTEN mutations showing a less impaired overall pattern and people with SYNGAP1 mutations showing more attentional, processing speed, and social processing difficulties relative to people with NFIX mutations. Webcam-collected performance measures appear to be a reliable and potentially useful method for objective characterization and monitoring of social and cognitive processes in NDGS and idiopathic NDD. Additional validation work, including more detailed convergent and discriminant validity analyses and examination of sensitivity to change, is needed to replicate and extend these observations.


Asunto(s)
Inteligencia Artificial , Discapacidad Intelectual , Humanos , Reproducibilidad de los Resultados , Inteligencia , Psicometría
3.
Eur J Hum Genet ; 31(10): 1117-1124, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37500725

RESUMEN

Nuclear receptor subfamily 2 group F member 2 (NR2F2 or COUP-TF2) encodes a transcription factor which is expressed at high levels during mammalian development. Rare heterozygous Mendelian variants in NR2F2 were initially identified in individuals with congenital heart disease (CHD), then subsequently in cohorts of congenital diaphragmatic hernia (CDH) and 46,XX ovotesticular disorders/differences of sexual development (DSD); however, the phenotypic spectrum associated with pathogenic variants in NR2F2 remains poorly characterized. Currently, less than 40 individuals with heterozygous pathogenic variants in NR2F2 have been reported. Here, we review the clinical and molecular details of 17 previously unreported individuals with rare heterozygous NR2F2 variants, the majority of which were de novo. Clinical features were variable, including intrauterine growth restriction (IUGR), CHD, CDH, genital anomalies, DSD, developmental delays, hypotonia, feeding difficulties, failure to thrive, congenital and acquired microcephaly, dysmorphic facial features, renal failure, hearing loss, strabismus, asplenia, and vascular malformations, thus expanding the phenotypic spectrum associated with NR2F2 variants. The variants seen were predicted loss of function, including a nonsense variant inherited from a mildly affected mosaic mother, missense and a large deletion including the NR2F2 gene. Our study presents evidence for rare, heterozygous NR2F2 variants causing a highly variable syndrome of congenital anomalies, commonly associated with heart defects, developmental delays/intellectual disability, dysmorphic features, feeding difficulties, hypotonia, and genital anomalies. Based on the new and previous cases, we provide clinical recommendations for evaluating individuals diagnosed with an NR2F2-associated disorder.


Asunto(s)
Anomalías Múltiples , Cardiopatías Congénitas , Hernias Diafragmáticas Congénitas , Discapacidad Intelectual , Animales , Humanos , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Factor de Transcripción COUP II/genética , Cardiopatías Congénitas/genética , Hernias Diafragmáticas Congénitas/genética , Discapacidad Intelectual/genética , Hipotonía Muscular , Síndrome
4.
medRxiv ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37205357

RESUMEN

GC-rich tandem repeat expansions (TREs) are often associated with DNA methylation, gene silencing and folate-sensitive fragile sites and underlie several congenital and late-onset disorders. Through a combination of DNA methylation profiling and tandem repeat genotyping, we identified 24 methylated TREs and investigated their effects on human traits using PheWAS in 168,641 individuals from the UK Biobank, identifying 156 significant TRE:trait associations involving 17 different TREs. Of these, a GCC expansion in the promoter of AFF3 was linked with a 2.4-fold reduced probability of completing secondary education, an effect size comparable to several recurrent pathogenic microdeletions. In a cohort of 6,371 probands with neurodevelopmental problems of suspected genetic etiology, we observed a significant enrichment of AFF3 expansions compared to controls. With a population prevalence that is at least 5-fold higher than the TRE that causes fragile X syndrome, AFF3 expansions represent a significant cause of neurodevelopmental delay.

5.
Am J Med Genet A ; 191(7): 1741-1757, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37045800

RESUMEN

There are few well-validated measures that are appropriate for assessing the full range of neurobehavioral presentations in PTEN hamartoma tumor syndrome (PHTS) and other neurodevelopmental genetic syndromes (NDGS). As potential therapeutics are developed, having reliable, valid, free, and easily accessible measures to track a range of neurobehavioral domains will be crucial for future clinical trials. This study focused on the development and initial psychometric evaluation of a set of freely available informant-report survey scales for PHTS-the Neurobehavioral Evaluation Tool (NET). Concept elicitation, quantitative ratings, and cognitive interviewing processes were conducted with stakeholders and clinician-scientist experts, used to identify the most important neurobehavioral domains for this population, and to ensure items were appropriate for the full range of individuals with PHTS. Results of this process identified a PHTS neurobehavioral impact model with 11 domains. The final NET scales assessing these domains were administered to a sample of 384 participants (median completion time = 20.6 min), including 32 people with PHTS, 141 with other NDGS, 47 with idiopathic neurodevelopmental disorder (NDD), and 164 neurotypical controls. Initial psychometric results for the total scores of each scale indicated very good model (ω = 0.83-0.99) and internal consistency reliability (α = 0.82-0.98) as well as excellent test-retest reproducibility at 1-month follow-up (r = 0.78-0.98) and stability at 4-month follow-up (r = 0.76-0.96). Conditional reliability estimates indicated very strong measurement precision in key score ranges for assessing PHTS and other people with NDGS and/or idiopathic NDD. Comparisons across domains between PHTS and the other groups revealed specific patterns of symptoms and functioning, including lower levels of challenging behavior and more developed daily living and executive functioning skills relative to other NDGS. The NET appears to be a reliable and potentially useful tool for clinical characterization and monitoring of neurobehavioral symptoms in PHTS and may also have utility in the assessment of other NDGS and idiopathic NDD. Additional validation work, including convergent and discriminant validity analyses, are needed to replicate and extend these observations.


Asunto(s)
Síndrome de Hamartoma Múltiple , Humanos , Síndrome de Hamartoma Múltiple/diagnóstico , Síndrome de Hamartoma Múltiple/genética , Síndrome de Hamartoma Múltiple/patología , Reproducibilidad de los Resultados , Fosfohidrolasa PTEN/genética
6.
Endocrine ; 80(1): 47-53, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36547798

RESUMEN

Thyroglobulin (TG), the predominant glycoprotein of the thyroid gland, functions as matrix protein in thyroid hormonegenesis. TG deficiency results in thyroid dyshormonogenesis. These variants produce a heterogeneous spectrum of congenital goitre, with an autosomal recessive mode of inheritance. The purpose of this study was to identify and functionally characterize new variants in the TG gene in order to increase the understanding of the molecular mechanisms responsible for thyroid dyshormonogenesis. A total of four patients from two non-consanguineous families with marked alteration of TG synthesis were studied. The two families were previously analysed in our laboratory, only one deleterious allele, in each one, was detected after sequencing the TG gene (c.2359 C > T [p.Arg787*], c.5560 G > T [p.Glu1854*]). These findings were confirmed in the present studies by Next-Generation Sequencing. The single nucleotide coding variants of the TG gene were then analyzed to predict the possible variant causing the disease. The p.Pro2232Leu (c.6695 C > T), identified in both families, showing a low frequency population in gnomAD v2.1.1 database and protein homology, amino acid prediction, and 3D modeling analysis predict a potential pathogenic effect of this variant. We also transiently express p.Pro2232Leu in a full-length rat TG cDNA clone and confirmed that this point variant was sufficient to cause intracellular retention of mutant TG in HEK293T cells. Consequently, each family carried a compound heterozygous for p.Arg787*/p.Pro2232Leu or p.Glu1854*/p.Pro2232Leu variants. In conclusion, our results confirm the pathophysiological importance of altered TG folding as a consequence of missense variants located in the ChEL domain of TG.


Asunto(s)
Hipotiroidismo Congénito , Bocio , Animales , Humanos , Ratas , Hipotiroidismo Congénito/genética , Células HEK293 , Tiroglobulina/genética , Tiroglobulina/metabolismo , Transporte de Proteínas/genética
7.
Brain ; 145(8): 2687-2703, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35675510

RESUMEN

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Asunto(s)
Encefalopatías , Epilepsia , Discapacidad Intelectual , Espasmos Infantiles , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato , Atrofia , Niño , Homeostasis , Humanos , Lactante , Lisosomas , Fenotipo
8.
Genet Med ; 24(6): 1261-1273, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35341651

RESUMEN

PURPOSE: This study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants. METHODS: Individuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope. RESULTS: We reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies. CONCLUSION: SOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.


Asunto(s)
Metilación de ADN , Hipogonadismo , Síndrome de Klinefelter , Trastornos del Neurodesarrollo , Factores de Transcripción SOXC , Metilación de ADN/genética , Humanos , Hipogonadismo/genética , Síndrome de Klinefelter/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Factores de Transcripción SOXC/genética , Secuenciación del Exoma
9.
Hum Mutat ; 42(7): 811-817, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33993607

RESUMEN

Heterozygous intragenic loss-of-function mutations of ERF, encoding an ETS transcription factor, were previously reported to cause a novel craniosynostosis syndrome, suggesting that ERF is haploinsufficient. We describe six families harboring heterozygous deletions including, or near to, ERF, of which four were characterized by whole-genome sequencing and two by chromosomal microarray. Based on the severity of associated intellectual disability (ID), we identify three categories of ERF-associated deletions. The smallest (32 kb) and only inherited deletion included two additional centromeric genes and was not associated with ID. Three larger deletions (264-314 kb) that included at least five further centromeric genes were associated with moderate ID, suggesting that deletion of one or more of these five genes causes ID. The individual with the most severe ID had a more telomerically extending deletion, including CIC, a known ID gene. Children found to harbor ERF deletions should be referred for craniofacial assessment, to exclude occult raised intracranial pressure.


Asunto(s)
Cromosomas Humanos Par 19 , Discapacidad Intelectual , Niño , Deleción Cromosómica , Haploinsuficiencia , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Mutación , Proteínas Represoras/genética
10.
Genet Med ; 23(7): 1202-1210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33674768

RESUMEN

PURPOSE: The variant spectrum and the phenotype of X-linked Kabuki syndrome type 2 (KS2) are poorly understood. METHODS: Genetic and clinical details of new and published individuals with pathogenic KDM6A variants were compiled and analyzed. RESULTS: Sixty-one distinct pathogenic KDM6A variants (50 truncating, 11 missense) from 80 patients (34 males, 46 females) were identified. Missense variants clustered in the TRP 2, 3, 7 and Jmj-C domains. Truncating variants were significantly more likely to be de novo. Thirteen individuals had maternally inherited variants and one had a paternally inherited variant. Neonatal feeding difficulties, hypoglycemia, postnatal growth retardation, poor weight gain, motor delay, intellectual disability (ID), microcephaly, congenital heart anomalies, palate defects, renal malformations, strabismus, hearing loss, recurrent infections, hyperinsulinism, seizures, joint hypermobility, and gastroesophageal reflux were frequent clinical findings. Facial features of over a third of patients were not typical for KS. Males were significantly more likely to be born prematurely, have shorter stature, and severe developmental delay/ID. CONCLUSION: We expand the KDM6A variant spectrum and delineate the KS2 phenotype. We demonstrate that the variability of the KS2 phenotypic depends on sex and the variant type. We also highlight the overlaps and differences between the phenotypes of KS2 and KS1.


Asunto(s)
Histona Demetilasas/genética , Discapacidad Intelectual , Caracteres Sexuales , Anomalías Múltiples , Proteínas de Unión al ADN/genética , Cara/anomalías , Femenino , Estudios de Asociación Genética , Enfermedades Hematológicas , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Proteínas de Neoplasias/genética , Fenotipo , Enfermedades Vestibulares
11.
Eur J Endocrinol ; 184(6): 791-801, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33780351

RESUMEN

OBJECTIVES: To determine trends in clinical practice for individuals with DSD requiring gonadectomy. DESIGN: Retrospective cohort study. METHODS: Information regarding age at gonadectomy according to diagnosis; reported sex; time of presentation to specialist centre; and location of centre from cases reported to the International DSD Registry and who were over 16 years old in January 2019. RESULTS: Data regarding gonadectomy were available in 668 (88%) individuals from 44 centres. Of these, 248 (37%) (median age (range) 24 (17, 75) years) were male and 420 (63%) (median age (range) 26 (16, 86) years) were female. Gonadectomy was reported from 36 centres in 351/668 cases (53%). Females were more likely to undergo gonadectomy (n = 311, P < 0.0001). The indication for gonadectomy was reported in 268 (76%). The most common indication was mitigation of tumour risk in 172 (64%). Variations in the practice of gonadectomy were observed; of the 351 cases from 36 centres, 17 (5%) at 9 centres had undergone gonadectomy before their first presentation to the specialist centre. Median age at gonadectomy of cases from high-income countries and low-/middle-income countries (LMIC) was 13.0 years (0.1, 68) years and 16.5 years (1, 28), respectively (P < 0.0001) with the likelihood of long-term retention of gonads being higher in LMIC countries. CONCLUSIONS: The likelihood of gonadectomy depends on the underlying diagnosis, sex of rearing and the geographical setting. Clinical benchmarks, which can be studied across all forms of DSD will allow a better understanding of the variation in the practice of gonadectomy.


Asunto(s)
Castración/estadística & datos numéricos , Trastornos del Desarrollo Sexual/diagnóstico , Trastornos del Desarrollo Sexual/cirugía , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Trastornos del Desarrollo Sexual/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sistema de Registros , Estudios Retrospectivos , Adulto Joven
12.
Genet Med ; 23(2): 408-414, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33033404

RESUMEN

PURPOSE: Lamins are the major component of nuclear lamina, maintaining structural integrity of the nucleus. Lamin A/C variants are well established to cause a spectrum of disorders ranging from myopathies to progeria, termed laminopathies. Phenotypes resulting from variants in LMNB1 and LMNB2 have been much less clearly defined. METHODS: We investigated exome and genome sequencing from the Deciphering Developmental Disorders Study and the 100,000 Genomes Project to identify novel microcephaly genes. RESULTS: Starting from a cohort of patients with extreme microcephaly, 13 individuals with heterozygous variants in the two human B-type lamins were identified. Recurrent variants were established to be de novo in nine cases and shown to affect highly conserved residues within the lamin ɑ-helical rod domain, likely disrupting interactions required for higher-order assembly of lamin filaments. CONCLUSION: We identify dominant pathogenic variants in LMNB1 and LMNB2 as a genetic cause of primary microcephaly, implicating a major structural component of the nuclear envelope in its etiology and defining a new form of laminopathy. The distinct nature of this lamin B-associated phenotype highlights the strikingly different developmental requirements for lamin paralogs and suggests a novel mechanism for primary microcephaly warranting future investigation.


Asunto(s)
Laminopatías , Microcefalia , Humanos , Lamina Tipo B/genética , Microcefalia/genética
13.
Am J Med Genet A ; 182(12): 2877-2886, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33043602

RESUMEN

Wiedemann-Steiner syndrome (WDSTS) is a rare autosomal dominant condition caused by heterozygous loss of function variants in the KMT2A (MLL) gene, encoding a lysine N-methyltransferase that mediates a histone methylation pattern specific for epigenetic transcriptional activation. WDSTS is characterized by a distinctive facial phenotype, hypertrichosis, short stature, developmental delay, intellectual disability, congenital malformations, and skeletal anomalies. Recently, a few patients have been reported having abnormal skeletal development of the cervical spine. Here we describe 11 such individuals, all with KMT2A de novo loss-of-function variants: 10 showed craniovertebral junction anomalies, while an 11th patient had a cervical abnormality in C7. By evaluating clinical and diagnostic imaging data we characterized these anomalies, which consist primarily of fused cervical vertebrae, C1 and C2 abnormalities, small foramen magnum and Chiari malformation type I. Craniovertebral anomalies in WDSTS patients have been largely disregarded so far, but the increasing number of reports suggests that they may be an intrinsic feature of this syndrome. Specific investigation strategies should be considered for early identification and prevention of craniovertebral junction complications in WDSTS patients.


Asunto(s)
Anomalías Múltiples/patología , Vértebras Cervicales/patología , Contractura/patología , Trastornos del Crecimiento/patología , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/patología , Microcefalia/patología , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Anomalías Múltiples/genética , Adolescente , Adulto , Vértebras Cervicales/metabolismo , Niño , Preescolar , Contractura/genética , Facies , Femenino , Trastornos del Crecimiento/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Fenotipo , Síndrome , Adulto Joven
14.
Am J Med Genet A ; 182(7): 1637-1654, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32319732

RESUMEN

With advances in genetic testing and improved access to such advances, whole exome sequencing is becoming a first-line investigation in clinical work-up of children with developmental delay/intellectual disability (ID). As a result, the need to understand the importance of genetic variants and its effect on the clinical phenotype is increasing. Here, we report on the largest cohort of patients with HNRNPU variants. These 21 patients follow on from the previous study published by Yates et al. in 2017 from our group predominantly identified from the Deciphering Developmental Disorders study that reported seven patients with HNRNPU variants. All the probands reported here have a de novo loss-of-function variant. These probands have craniofacial dysmorphic features, in the majority including widely spaced teeth, microcephaly, high arched eyebrows, and palpebral fissure abnormalities. Many of the patients in the group also have moderate to severe ID and seizures that tend to start in early childhood. This series has allowed us to define a novel neurodevelopmental syndrome, with a likely mechanism of haploinsufficiency, and expand substantially on already published literature on HNRNPU-related neurodevelopmental syndrome.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Trastornos del Neurodesarrollo/etiología , Adolescente , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Anomalías Craneofaciales/etiología , Femenino , Haploinsuficiencia/genética , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Microcefalia/etiología , Trastornos del Neurodesarrollo/genética , Embarazo , Convulsiones/genética , Síndrome
15.
Clin Genet ; 97(6): 890-901, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32266967

RESUMEN

Primrose syndrome (PS; MIM# 259050) is characterized by intellectual disability (ID), macrocephaly, unusual facial features (frontal bossing, deeply set eyes, down-slanting palpebral fissures), calcified external ears, sparse body hair and distal muscle wasting. The syndrome is caused by de novo heterozygous missense variants in ZBTB20. Most of the 29 published patients are adults as characteristics appear more recognizable with age. We present 13 hitherto unpublished individuals and summarize the clinical and molecular findings in all 42 patients. Several signs and symptoms of PS develop during childhood, but the cardinal features, such as calcification of the external ears, cystic bone lesions, muscle wasting, and contractures typically develop between 10 and 16 years of age. Biochemically, anemia and increased alpha-fetoprotein levels are often present. Two adult males with PS developed a testicular tumor. Although PS should be regarded as a progressive entity, there are no indications that cognition becomes more impaired with age. No obvious genotype-phenotype correlation is present. A subgroup of patients with ZBTB20 variants may be associated with mild, nonspecific ID. Metabolic investigations suggest a disturbed mitochondrial fatty acid oxidation. We suggest a regular surveillance in all adult males with PS until it is clear whether or not there is a truly elevated risk of testicular cancer.


Asunto(s)
Anomalías Múltiples/genética , Calcinosis/genética , Enfermedades del Oído/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Megalencefalia/genética , Atrofia Muscular/genética , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Anomalías Múltiples/patología , Acetil-CoA C-Aciltransferasa/genética , Adolescente , Adulto , Calcinosis/patología , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Niño , Preescolar , Enfermedades del Oído/patología , Enoil-CoA Hidratasa/genética , Cara/anomalías , Femenino , Estudios de Asociación Genética , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Megalencefalia/patología , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/patología , Atrofia Muscular/patología , Mutación , Mutación Missense/genética , Fenotipo , Racemasas y Epimerasas/genética , Neoplasias Testiculares , Adulto Joven
18.
Genet Med ; 22(5): 878-888, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31949314

RESUMEN

PURPOSE: Determination of genotypic/phenotypic features of GATAD2B-associated neurodevelopmental disorder (GAND). METHODS: Fifty GAND subjects were evaluated to determine consistent genotypic/phenotypic features. Immunoprecipitation assays utilizing in vitro transcription-translation products were used to evaluate GATAD2B missense variants' ability to interact with binding partners within the nucleosome remodeling and deacetylase (NuRD) complex. RESULTS: Subjects had clinical findings that included macrocephaly, hypotonia, intellectual disability, neonatal feeding issues, polyhydramnios, apraxia of speech, epilepsy, and bicuspid aortic valves. Forty-one novelGATAD2B variants were identified with multiple variant types (nonsense, truncating frameshift, splice-site variants, deletions, and missense). Seven subjects were identified with missense variants that localized within two conserved region domains (CR1 or CR2) of the GATAD2B protein. Immunoprecipitation assays revealed several of these missense variants disrupted GATAD2B interactions with its NuRD complex binding partners. CONCLUSIONS: A consistent GAND phenotype was caused by a range of genetic variants in GATAD2B that include loss-of-function and missense subtypes. Missense variants were present in conserved region domains that disrupted assembly of NuRD complex proteins. GAND's clinical phenotype had substantial clinical overlap with other disorders associated with the NuRD complex that involve CHD3 and CHD4, with clinical features of hypotonia, intellectual disability, cardiac defects, childhood apraxia of speech, and macrocephaly.


Asunto(s)
Discapacidad Intelectual , Megalencefalia , Trastornos del Neurodesarrollo , Niño , Femenino , Factores de Transcripción GATA/genética , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Nucleosomas , Fenotipo , Embarazo , Proteínas Represoras
19.
Am J Med Genet A ; 182(4): 713-720, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31926053

RESUMEN

Developmental and Epileptic encephalopathies (DEE) describe heterogeneous epilepsy syndromes, characterized by early-onset, refractory seizures and developmental delay (DD). Several DEE associated genes have been reported. With increased access to whole exome sequencing (WES), new candidate genes are being identified although there are fewer large cohort papers describing the clinical phenotype in such patients. We describe 6 unreported individuals and provide updated information on an additional previously reported individual with heterozygous de novo missense variants in YWHAG. We describe a syndromal phenotype, report 5 novel, and a recurrent p.Arg132Cys YWHAG variant and compare developmental trajectory and treatment strategies in this cohort. We provide further evidence of causality in YWHAG variants. WES was performed in five patients via Deciphering Developmental Disorders Study and the remaining two were identified via Genematcher and AnnEX databases. De novo variants identified from exome data were validated using Sanger sequencing. Seven out of seven patients in the cohort have de novo, heterozygous missense variants in YWHAG including 2/7 patients with a recurrent c.394C > T, p.Arg132Cys variant; 1/7 has a second, pathogenic variant in STAG1. Characteristic features included: early-onset seizures, predominantly generalized tonic-clonic and absence type (7/7) with good response to standard anti-epileptic medications; moderate DD; Intellectual Disability (ID) (5/7) and Autism Spectrum Disorder (3/7). De novo YWHAG missense variants cause EE, characterized by early-onset epilepsy, ID and DD, supporting the hypothesis that YWHAG loss-of-function causes a neurological phenotype. Although the exact mechanism of disease resulting from alterations in YWHAG is not fully known, it is possible that haploinsufficiency of YWHAG in developing cerebral cortex may lead to abnormal neuronal migration resulting in DEE.


Asunto(s)
Proteínas 14-3-3/genética , Síndromes Epilépticos/etiología , Estudios de Asociación Genética , Heterocigoto , Mutación Missense , Trastornos del Neurodesarrollo/etiología , Adolescente , Niño , Preescolar , Síndromes Epilépticos/patología , Femenino , Humanos , Masculino , Trastornos del Neurodesarrollo/patología
20.
Genet Med ; 22(2): 389-397, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31388190

RESUMEN

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Asunto(s)
Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Trastornos del Neurodesarrollo/genética , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Preescolar , Ensamble y Desensamble de Cromatina/genética , Discapacidades del Desarrollo/genética , Femenino , Estudios de Asociación Genética , Genotipo , Pérdida Auditiva/genética , Cardiopatías Congénitas/genética , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Megalencefalia/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Anomalías Musculoesqueléticas/genética , Mutación Missense/genética , Fenotipo , Síndrome , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...